Background
Quantification of circulating tumor DNA (ctDNA) levels is a reliable prognostic tool in several malignancies. Dynamic changes in ctDNA levels in response to treatment may also provide prognostic information. Here, we explore the value of changes in ctDNA levels in response to immune checkpoint inhibitors (ICIs).
Methods
We searched MEDLINE (host: PubMed) for trials of ICIs in advanced solid tumors in which outcomes were reported based on change in ctDNA levels. ctDNA reduction was defined as reported in individual trials. Typically, this was either >50% reduction or a reduction to undetectable levels. We extracted HRs and related 95% CIs and/or p values comparing ctDNA reduction versus no reduction for progression-free survival (PFS) and/or overall survival (OS). Data were then pooled in a meta-analysis. Variation in effect size was examined using subgroup analyses.
Results
Eighteen trials were included in the meta-analysis. ctDNA levels were detectable in all participants in all studies prior to initiation of ICIs. A reduction in ctDNA measured 6–16 weeks after starting treatment was associated with significantly better PFS (HR 0.20; 95% CI, 0.14 to 0.28; p<0.001). Similarly, OS was superior in patients with reduced ctDNA levels (HR 0.18; 95% CI, 0.12 to 0.26; p<0.001). The results were consistent across all disease sites, lines of treatment, magnitude of change (to undetectable vs >50% reduction) and whether treatment exposure comprised single or combination ICIs.
Conclusions
In advanced solid tumors, a reduction in ctDNA levels in response to ICIs is associated with substantial improvements in outcome. ctDNA change is an early response biomarker which may allow for de-escalation of cross-sectional imaging in patients receiving ICIs or support treatment de-escalation strategies.